Un equipo de más de 200 investigadores, liderado por la Universidad de Stanford, ha publicado esta semana en Nature un mapa que refleja las relaciones simbióticas entre los hongos y bacterias del suelo y los árboles en todos los continentes. La recopilación les ha permitido establecer la Regla de Read, un nuevo principio biológico que determina la influencia de variables como la temperatura, la humedad, la química del suelo, el tipo de vegetación o la topografía en el tipo de simbiosis que predomina en cada ecosistema.

 

El trabajo predice que, para 2070, si las emisiones de carbono permanecen inalteradas, se reducirá la biomasa de árboles con las simbiosis más beneficiosas en un diez por ciento en las zonas templadas, lo cual se traduciría en un aumento de las emisiones de carbono al disminuir su almacenamiento en el suelo de estas regiones.

 

“Las simbiosis ayudan a los árboles a acceder a diferentes nutrientes e influyen en la capacidad del suelo y del sistema suelo-árbol para retener carbono, de ahí que saber cómo funcionan esas relaciones y cuál es su distribución en el planeta es vital para conocer cómo esos cambios afectarán al ciclo del carbono y por lo tanto al clima del futuro”, explica Fernando Valladares, el investigador del Museo Nacional de Ciencias Naturales (MNCN-CSIC) (España) que ha participado en el estudio.

 

Para este artículo han trabajado con tres tipos de simbiosis que engloban a miles de hongos y bacterias que se asocian con diferentes especies de árboles: hongos micorrízicos arbusculares; hongos ectomicorrízicos y bacterias fijadoras de nitrógeno.

 

Según la Regla de Read, nombrada así por el experto en simbiosis David Read, las bacterias que fijan nitrógeno están limitadas por la temperatura y el pH del terreno mientras que los dos tipos de simbiosis con hongos (micorrizas y ectomicorrizas) están influenciadas por variables que afectan a las tasas de descomposición como la temperatura y la humedad.